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Modelling of tension in yarn package unwinding
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Abstract. An improved theory for the variation of yarn tension during high speed over-end unwinding from cylin-
drical yarn packages based upon the theory of bent and twisted elastic rods is presented. A singular perturbation
analysis is used to show that the effects of bending and twisting stiffnesses are confined to a boundary layer in the
neighbourhood of the unwind point while, over most of the yarn path, the yarn motion can be analysed with a string
theory. The boundary-layer analysis provides a description for the cohesive forces that hold the yarn windings in
the package.

In most situations the motion of the unwind point forwards and backwards over the package is much longer
than the rotational time of the balloon about the package axis, and a two-timing analysis is used to simulate this
process as a series of quasi-stationary yarn balloons. The motion of the unwind point is shown to be asymmetrical
with respect to its direction of motion on the package surface, which is in qualitative agreement with experimental
measurements.

Key words: yarn balloons, yarn package unwinding, boundary layers, matched asymptotic expansions, two-timing
analysis

1. Introduction

Over-end unwinding of yarn from large helically wound cylindrical packages is fundamental
to many operations in the textile industry. In this process the package is held stationary and
the yarn is withdrawn at a high constant speedV through aguide-eyelocated at a fixed point
on the package axis (V in Figure 1). The loop of yarnOPL between the guide-eye and the
package attains a considerable angular velocity about the package axis and the imaginary
surface generated by this rotating loop is called aballoon.Yarn balloons also occur in other
yarn transport and manufacturing processes such as ring-spinning and two-for-one twisting.

The theory of yarn balloon formation is thus of significant interest to the textile industry
and a considerable literature exists. References [1]–[5] provide a more complete discussion
of the development of the theory and earlier literature on the unwinding balloon, while [6]
provides a comprehensive list of references to the literature on ring-spinning and two-for-one
twister balloons. The investigation described in this paper extends the work reported in the
papers by Padfield [1], Kothari and Leaf [2], and Fraseret al. [3].

The purpose of the present investigation is to give a complete analysis of the motion of the
yarn between theunwind point U, where the yarn first moves from its stationary position on
the package surface, and the guide-eyeO. At the lift-off point L the yarn leaves the package
surface and flies into the balloon. Over most of its path fromU to O the yarn can be modelled
as a perfectly flexible string, and this is the model used in the papers already mentioned. In
the paper by Fraseret al. [3] two-timing asymptotics [7, pp. 37–117] are used to simulate
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the unwinding process as a sequence ofquasi-stationaryballoons as the unwind pointU
is stepped uniformly backwards and forwards along the package surface. This asymptotic
expansion is based on the assumption that thewind-onangleφu, is small. Although the results
obtained under this assumption explained most of the yarn tension variation at the guide-eye
during unwinding, recent experimental work by Konget al.[8] reveals a number of significant
difficulties with that model:
1. The experimental tension results exhibit a distinct asymmetry with respect to whether

point U is moving away from, or towards the guide-eye. That is, with respect to the
sign of the wind-on angleφu. (φu > 0 when Umoves away from the guide-eye, and
φu < 0 when it moves towards the guide-eye.) The simulations reported in [3] showed
a symmetrical guide-eye tension variation as the pointU moved backwards and forwards
along the package surface.

2. There is clear experimental evidence that in the neighbourhood ofU the curvature of the
yarn varies rapidly enough so that in a flexible string model the yarn path would have a
kink at U. In this paper the yarn is modelled as a uniform elastic rod of circular cross-
section and small bending and torsional stiffnessesB andK respectively. It is clear that
over most of the yarn path betweenU andO these stiffnesses can be neglected and the
flexible string is a satisfactory model. However, in the neighbourhood of the unwind-point
U there is a bending boundary-layer in which bending stiffness becomes significant for
the determination of the yarn path nearU. This boundary-layer analysis also provides a
model for the cohesive force that holds the yarn in the package.

In the next section the derivation of the elastic-rod yarn model is reviewed. The equations
are then recast into a suitable dimensionless form that reflects the fact that the cross-sectional
radius of the yarn is very small compared with the package radius. In Section 3 a singular
perturbation analysis is used to develop theO(1) equations for the yarn path in the outer
region away from the unwind pointU, and in the boundary-layer in the neighbourhood of
U. This formally justifies the use of a string theory to model the balloon and provides a
set of boundary conditions at the unwind pointU. In Section 4, a two-timing analysis is
applied to theO(1) equations obtained from the singular perturbation analysis to show that the
unwinding process can be modelled as a set of quasi-stationary problems as the unwind point
moves backwards and forwards along the package surface. This also explains the asymmetry
observed in the experimental results. Section 5 presents a set of numerical calculations to
simulate the unwinding problem.

2. The mathematical formulation

In this paper the yarn is modelled as an elastic rod of uniform circular cross-section radius
a, mass per unit lengthm, and inextensible centre-line. The torque/torsion, and bending mo-
ment/curvature constitutive equations are assumed to be linear. The bending and torsional
stiffnesses [9, pp. 162] are given by

K = 1
2GAa

2,andB = 1
4EAa

2, (2.1)

where:E is the Young’s modulus;G is the shear modulus; andA = πa2 is the cross-sectional
area of the rod. Ifν is Poisson’s ratio thenG = E/[2(1 + ν)], and with ν = 0·5 (the
incompressible limit) this leads to

K = 2
3B. (2.2)
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Figure 1. Schematic diagram of the over-end unwinding process: guide-eyeO; balloon OPL; lift-off point L;
unwind pointU; wind-on angleφu; withdrawl speedV.

The point to be made here is that these stiffnesses have the same order of magnitude. These
formulae are also used below to estimate this order of magnitude.

Figures 2a and 2b show the forces and moments acting on a material element of the yarn at
P which has position vectorR(s, t) relative to the originO of a Cartesian coordinate system
Oxyz (with base vectorsi, j , k) that rotates with constant angular velocityω0k about the axis
of the cylindrical package (Figure 1). Heres is the distance ofP along the yarn fromO at time
t. Note that in this problemω0 is the average angular speed of the unwinding balloon taken
over the unwinding cycle as the unwind pointU moves from the front (nearest the guide-eye
O) to the rear of the package and back. This speed must be determined as part of the solution
of the problem as a function of the wind-on angleφu and the unwinding speedV.

Equations for the rate of change of linear and angular momentum of the right cylindrical
yarn element with its centre of mass located atP will now be derived.
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Figure 2. (a) Forces acting on the cylindrical yarn elementP. Shear forceV perpendicular to the yarn tangent
vector, yarn tensionT, and frictional or air drag forceF per unit length. (b) Moment vectors acting on the
cylindrical yarn element atP. Axial torqueQ, bending momentM , and axial torque generated by surface friction
forcesq per unit length.

2.1. LINEAR MOMENTUM

The equation for the rate of change of linear momentum is

m
{
D2R+ 2ω0k ×DR+ ω2

0k × (k × R)
} = (TR′)′ + V ′ + F, (2.3)

where:( )′ = ∂( )/∂s; andT (s, t) is the tension in the yarn. The shear forceV acts on the cross
section perpendicular to the yarn axis. This force is present because the bending stiffness of
the yarn is now taken into consideration. For a flexible yarnV = 0 everywhere. The operator
D is the material derivative, relative to the rotating coordinate system, following the motion
of the yarn elementP through the balloon:

D = ∂

∂t
− V

∂

∂s
, (2.4)

andV is the (constant) speed of the yarn through the balloon.
The vectorF is the force per unit length on the yarn due to frictional drag if the yarn is

moving in contact with the surface of the package or due to air-drag when the yarn is in the
balloon. The air drag, acting on a freely ballooning yarn, is assumed to act in the opposite
direction to the componentvn, of the yarn velocity normal to the yarn axis, and to have a
magnitude proportional to|vn|2. The equation for the air drag is

F = −Dn|vn|vn,
where vn = v− (v · R′)R′,
and v = DR+ ω0k × R

 (2.5)

is the yarn velocity relative to an inertial reference frame, andDn, is the air-drag coefficient
[3].

The total force that the package exerts on the yarn is given by

F = Ner − µN
v
|v| , (2.6)
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where:(er ,eθ, k) are the basis vectors of the cylindrical coordinate systemr, θ, z relative to the
rotating Cartesian coordinate system;N is the normal force between the yarn and the package;
andµ is the coefficient of sliding friction.

The inextensibility condition is

∂R
∂s
· ∂R
∂s
= 1. (2.7)

2.2. ANGULAR MOMENTUM

The yarn is modelled as a linearly elastic inextensible rod of uniform circular cross-section
deforming under the Kirchhoff hypothesis that plane sections remain plane, undeformed, and
perpendicular to the rod axis (see [10] for details).

The moment of inertia of the right-cylindrical element is the same about all diameters,
and the principal moments of inertia of the element of lengthδs areI1 = 1/2(ma2δs), I2 =
I3 = 1/4(ma2δs) with respect to the orthogonal material axes(R′,d2,d3) whered2 andd3

are embedded within the material cross section and whereR′ = d2×d3. The angular velocity
� of the element is given by

� = ωtR′ + R′ × (DR′ + ω0k × R′), (2.8)

and the angular momentum vector relative to the centre of mass of the element is therefore
given by

Hδs = 1
2ma

2δs
{
ωtR′ + 1

2[R′ × (DR′ + ω0k × R′)]} , (2.9)

whereωtR′ is the component of the angular velocity of the yarn element about the yarn axis.
The equation for the rate of change of angular momentum of the mass element expressed in
the reference frame which spins with the angular velocityω0k is

DH + ω0k × H = 1
2ma

2 {D(ωtR′)+ 1
2R′ ×D2R′ − ω0(k · R′)DR′

+ 1
2ω0(2ωt − ω0k · R′)(k × R′)

}
= (QR′)′ +M ′ + R′ × V + qR′, (2.10)

where:QR′ is the axial torque vector;M is the bending moment vector; andqR′ is the axial
moment per unit yarn length due to frictional forces exerted on the surface of the yarn moving
on the package surface between unwind-pointU and the lift-off pointL in Figure 1. On the
assumption of Amonton’s law

q = aµN, (2.11)

whereµ andN are defined in Equation (2.6). For a freely ballooning yarnq = 0.
These equations are supplemented with the inextensibility constraint Equation (2.7), along

with the normality constraints

V · R′ = 0 and M · R′ = 0. (2.12)

The moment-curvature and torque-torsion constitutive relations are

M = B(R′ × R′′) and Q = K(φ′ − b′ · n), (2.13)
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where thetorsion (φ′ − b′ · n) is the sum of thetwist φ′ and thetortuosityof the yarn path
−b′ · n of Love [11, pp. 381–396]. (Heren andb are the normal and binormal vectors of the
yarn path.)

2.2.1. The twist flow equation
To complete the formulation of the problem an equation governing the flow of twist along the
yarn must be added to the dynamic equations. The derivation of this equation is given in [10].

LetN (s, t) (radians) be the total angular rotation undergone by the yarn cross section since
it started moving from the unwind-pointU in Figure 1. The torsion and the angular speedωt

are related to this function as follows:

∂N

∂s
= (φ′ − b′ · n) and DN = ωt . (2.14)

Note, the difference in the definition ofωt between this paper and [10] is thatωt defined
here includes the term(k · R′)ω0. Also the definition ofN (s, t) as the integral of the torsion
given in that paper is only valid forquasi-stationaryballoons that are independent of time
when viewed from the rotating reference frame.

2.3. DIMENSIONLESS EQUATIONS

Dimensionless (barred) variables are defined as follows:

R̄ = R
c
, s̄ = s

c
, v̄ = v

ω0c
, V̄ = V

ω0c
, t̄ = ω0t,

D̄ = ∂

∂t
− V

∂

∂s̄
, T̄ = T

mω2
0c

2
, N̄ = N

mω2
0c

2
, F̄ = F

mω2
0c

2
.

(2.15)

The dimensionless moment, shear force and yarn twist variables are:

H̄ = H
mω0c2

, V̄ = V
mω2

0c
2
, M̄ = M

mω2
0c

3
,

Q̄ = Q

mω2
0c

3
, q̄ = q

mω2
0c

2
= δµN̄,

(2.16)

whereδ = a/c, and the angular velocities have been scaled against the average angular speed
of the balloonω0.

As all variables will be dimensionless from now on, unless specifically stated otherwise,
the barred notation will be dropped.

The dimensionless form of the rate of change of linear momentum Equation (2.3) is

D2R+ 2k ×DR+ k × (k × R) = (TR′)′ + V ′ + F, (2.17)

where in the freely ballooning yarn the air-dragF = −(p0/16)|vn|vn, and on the package
F is still given by Equation (2.6). The dimensionless air-drag coefficientp0 = 16cDn/m
introduced in [1] takes on values between 2 and 4 for typical yarns.

The rate of change of the angular momentum Equation (2.10) is now given by

DH + k ×H = 1
2δ

2 {D(ωtR′)+ 1
2R′ ×D2R′ − (k · R′)DR′

+ 1
2(2ωt − k · R′)(k × R′)

}
= (QR′)′ +M ′ + R′ × V + qR′. (2.18)
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The dimensionless constitutive equations are

M = β
δ2

γ
(R′ × R′′) and Q = κ

δ2

γ
(φ′ − b′ · n), (2.19)

where

δ = a

c
≈ 10−3 and γ = mω2

0c
2

EA
≈ 10−3. (2.20)

γ is the elasticity parameter introduced in [4]. For an isotropic linear elastic rod with Poisson’s
ratio ν

β = 1

4
and κ = 1

(1+ ν)
(2.21)

are bothO(1) quantities.
The rotation satisfies a wave equation found as follows. First, form the scalar product of

Equation (2.18) withR′ to obtain

1
2δ

2Dωt = Q′ + q, (2.22)

whereq = 0 in the freely ballooning yarn betweenO andL andq = δµN betweenL and
U. When use is made of the definition of the rotationN (s, t), Equations (2.14), in the above
equation the result is

1
2D

2N = κ

γ
N ′′, (2.23)

in the freely ballooning yarn. Finally, if Equation (2.22) is subtracted from Equation (2.18)
the equation for the component of the rate of change of angular momentum transverse to the
yarn axis is obtained:

1
2δ

2
{
(R′ ×D2R′)+ (ωt − k · R′)DR′ + 1

2(2ωt − k · R′)(k × R′)
}

= QR′′ +M ′ + R′ × V.
(2.24)

The geometric boundary conditions that apply to these equations for the yarn unwinding
problem are straight forward: at the guide-eyeO wheres = 0 and at the lift-off pointL where
s = s`. They are:

R(0, t) = 0 and R(s`, t) · er = 1, R′(s`, t) · er = 0, (2.25)

that is, at the lift-off point, the yarn just touches the package surface and its tangent is con-
tinuous and lies in the tangent plane to the package surface. In addition, the position, tangent
and velocity vectors are continuous ats`.

The boundary conditions at the unwind-pointU, however, are more complicated, because
this point moves up and down the package as the yarn is unwound, and at this point the yarn
begins to move from its stationary position on the package surface. (The development of the
boundary condition atU is deferred until Section 3.2 below.)

Examination of the dimensionless Equations (2.17), (2.20) and (2.24) suggests that, since
δ2 is very small andγ is also small, over most of the yarn path where the curvature is small the
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effect of angular momentum, bending moment, torque and transverse shear can be neglected.
Thus, over most of the yarn pathM = V = 0, and the motion is governed by the linear mo-
mentum equation alone. However, in the neighbourhood ofU the yarn can undergo a distinct
kink or rapid change in the direction of its tangent vector, as observed experimentally in [8],
and these quantities can not be ignored. In the next section a boundary layer solution, valid in
the neighbourhood ofU, is constructed and solution of this boundary layer problem provides
the boundary condition atU. This will now be established by a singular perturbation analysis.

3. Perturbation analysis

Since this is a bending boundary-layer problem, the appropriate small parameter for the
perturbation expansions is

ε2 = δ2

γ
≈ 10−3, (3.1)

which compares with the small parameter defined for the bending boundary layer in the mov-
ing strip problem [12]. From Equation (2.20) it can also be deduced thatO(δ) ∼ O(ε2). It will
thus be convenient to write

δ = αε2, (3.2)

whereα is anO(1) parameter.

3.1. THE OUTER EXPANSION

Over most of the yarn path betweenO andU, except in the neighbourhood ofU, expansions
of the form

T (s, t) = T0(s, t)+ εT1(s, t)+ ε2T2(s, t)+ · · · ,
R(s, t) = R0(s, t)+ εR1(s, t)+ ε2R2(s, t)+ · · ·

}
(3.3)

and so on are substituted into the dimensionless equations to obtain a hierarchy of problems
in powers ofε.

The separated constitutive Equations (2.19) give the immediate results

M0 = M1 = 0, M2 = β(R′0× R′′0),

Q0 = Q1 = 0, Q2 = κ(φ′0− b′0 · n0),

}
(3.4)

while the angular momentum Equation (2.24) becomes

1
2α

2ε4
{

1
2(R0×D2R′0)+ (ωt0− k · R′0)DR′0+ 1

2(2ωt0− k · R′0)(k × R0)
}

= ε2[Q2R′′0 +M ′2] + (R′0+ εR′1+ ε2R′2)× (V0+ εV1+ ε2V2). (3.5)

It follows from this equation that

V0 = V1 = 0,

and

Q2R′′0 +M ′2+ R′0× V2 = 0. (3.6)
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Thus, yarn twist and bending stiffnesses have at most anO(ε2) effect on the yarn path except
near the unwind pointU where the derivativesR′′ andR′′′ may become large. This means that
to this order the yarn path is determined by the linear momentum Equation (2.17) which, to
O(1), becomes

D2R0+ 2k ×DR0+ k × (k × R0) = (T0R′0)
′ + F0. (3.7)

This result agrees with the comparable expression obtained in [10] for the ring-spinning
balloon.

The detailed solution of this equation will be described in Section 4 after the boundary-
layer expansion has been discussed.

3.2. THE BOUNDARY-LAYER EXPANSION

In the boundary layer atU the following coordinate and variable transformations are intro-
duced:

η = su(t)− s
ε

, R(s, t) = Ru(t)+ εr̂(η, t), (3.8)

wheresu(t) is the length of yarn betweenO andU at timet, andRu(t) is the position vector
of U, a function of time alone:

dRu

dt
+ eθ = (ṡu(t)+ V)(cosφueθ + sinφuk), (3.9)

whereṡu = dsu/dt , and atU, η = 0 andr̂ = 0. From now on boundary layer variables will
be distinguished with a hat.

The operatorsD andD2 transform to

D = ∂

∂t
+ 1

ε
(ṡu + V)

∂

∂η
,

D2 = ∂2

∂t2
+ s̈u

ε

∂

∂η
+ 2

ε
(ṡu + V)

∂2

∂t∂η
+ 1

ε2
(ṡu + V)2

∂2

∂η2·

 (3.10)

The constitutive Equations (2.19) transform into

M̂ = −εβ(r̂η × r̂ηη), Q̂ = −εκ(φ̂η − bη · n), (3.11)

where( )η = ∂( )∂η.
In order to facilitate the solution of the boundary-layer equations, a local coordinate system

of unit orthogonal basis vectors with its origin atU is introduced:

e1 = − cosφueθ − sinφuk,

e2 = sinφueθ − cosφuk,

}
(3.12)

which lie in the tangent plane to the package surface atU, see Figure 3. (Note also that
e1× e2 = er .)

As discussed in [12], the remote inner solution must approach a straight line asη → ∞
in order thatM̂ andV̂ → 0 and the remote tension̂T in the strand matches with that in the
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Figure 3. The coordinate system describing the boundary layer at the unwind pointU . φu > 0 asU moves away
from the guide eye (forward unwinding), andφu < 0 asU moves toward the guide eye (backward unwinding).

outer solution. Thus, the boundary cnndition onr̂(η) at U is r̂(0) = 0, and as (η → ∞) the
boundary conditions are determined by the matching conditions between the inner and outer
solutions:

limη→∞Ru(t)+ εr̂ (η, t) = lims→su R(s, t),

limη→∞ r̂η(η, t) = lims→su R′(s, t),

limη→∞ T̂ (η, t) = lims→su T (s, t),

limη→∞ M̂ (η, t) = V̂(η, t) = 0


(3.13)

whereR(s, t) andT (s, t) are outer solution quantities.
The boundary-layer variables are now expanded in power series:

r̂ = r̂0+ εr̂1+ ε2r̂2+ · · · ,
V̂ = V̂0+ εV̂1+ ε2V̂2+ · · · ,

 (3.14)

and so on, and these are substituted into the transformed governing equations to obtain a
hierarchy of equations in powers ofε.

From Equation (2.22) it is found that̂Q0 = 0 andQ̂1η = 0, and theO(1) result from the
angular momentum Equation (2.24) is

β(r̂0η × r̂0ηη)η − r̂0η × V̂0 = 0. (3.15)

TheO(1/ε) term of linear momentum Equation (2.17) is

(ṡu0+ V)2r̂0ηη = (T̂ ′r̂0η)η − V̂0η. (3.16)

Notice thatN̂ , the normal force per unit arc-length, which is perpendicular to the package
surface, drops out at this order so that the boundary layer is tangent to the package surface and
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lies in a plane spanned by theeθ andk directions. Now expresŝr0η in terms of the angleχ(η)
between the yarn tangent vector ande1, so that

r̂0η = cosχe1+ sinχe2. (3.17)

In order to obtain the differential equation forχ proceed as follows. First, Equation (3.16)
is integrated to obtain

(ṡu0+ V)2r̂0η = T̂0r̂0η − V̂0+ C, (3.18)

whereC is a constant of integration, which is found from the matching conditions Equation
(3.13) to be

C = [(ṡu0+ V)2− T0(su0, t)](cosψ0e1+ sinψ0e2).

T0 andψ0 are determined from the outer solution, and, to O(1), matching condition Equation
(3.13)2 gives limη→∞ χ → ψ0. Note thatχη,χηη, . . . all tend to zero asη → ∞. Next, the
scalar product of Equation (3.18) withê0η is formed to give

T̂0 =
[
T0(su0, t)− (ṡu0+ V)2

]
cos(ψ0− χ)+ (ṡu0 + V)2. (3.19)

The above results are substituted back into Equation (3.18) to obtain the shear force expression

V̂0 = [T0(su0, t)− (ṡu0+ V)2] sin(ψ0− χ)(sinχe1− cosχe2). (3.20)

Second, the formation of the vector product ofr̂0η with Equation (3.15), followed by the
substitution of Equation (3.17) provides a further expression forV̂0:

V̂0 = −βχηη(sinχe1− cosχe2). (3.21)

The elimination ofV̂0 from Equations (3.20) and (3.21) gives the equation forχ:

χηη = −3 sin(ψ0− χ), (3.22)

where

3 = β−1
[
T0(su0, t)− (ṡu0+ V)2

]
.

The first integral of this equation is(
dχ

dη

)2

= 23
[
1− cos(ψ0− χ)

]
,

where the constant of integration has been determined from the matching conditions given
above. A further integration leads to

√
3η =

∫ χ

0
csc

[
1

2
(ψ0− χ′)

]
dχ′ = −1

2
ln

[
tan

(
ψ0− χ′

4

)]∣∣∣∣χ
0

,

which, on rearrangement, gives the final result

χ(η) = ψ0− 4 arctan

[(
tan

ψ0

4

)
e−
√
3η

]
. (3.23)



70 J.D. Clark et al.

Thus, onceψ0 and ṡu0(t) are knownχ(η) is completely determined, and hence theO(1)
tension and shear force in the boundary layer are then determined from Equations (3.19) and
(3.20).

The tension and shear force at the unwind point are given respectively by the quantities
T̂0(0) andV̂0(0). In order to model the motion of the unwind point it is necessary to postulate
a physical mechanism which initiates yarn movement along the package surface. Since the
yarn elements are constrained to move in a direction perpendicular to the stationary windings,
and since the tension in an inextensible yarn is determined entirely by the yarn dynamics
betweenO andU (and can not be specified atU), the cohesive forces that hold the yarn in
the package are modelled by setting the magnitude of the shear force|V̂0(0)| at the end of the
boundary layer equal to a critical package parameterVc:

Vc =
∣∣[T0(su0, t)− (ṡu0+ V)2

]
sinψ0

∣∣ . (3.24)

4. The two-timing analysis

To complete the analysis of package unwinding, it is necessary to consider the motion of the
unwind point backwards and forwards along the package through a single unwinding cycle. If
the wind-on angleφu is small (|φu| ≤ 15◦) the period0 of the cycle is much longer than the
rotational timescale (ω−1

0 ). On this slow timescale the motion of the yarn asU moves through
one unwind cycle will be modelled as a series of decoupled quasi-static balloon shapes which
are stationary when viewed from the rapidly rotating reference frame. First, the motion of
the unwind-pointU is analysed, followed by a two-timing analysis of the boundary-layer and
outer solution equations.

4.1. THE MOTION OF THE UNWIND POINT

The time dependent motion of the unwind point is governed by Equation (3.9) which has
components

dθu

dt
+ 1= (ṡu + V) cosφu,

dzu
dt
= (ṡu + V) sinφu (4.1)

where(1, θu, zu) are the cylindrical coordinate components of the position ofU.
In order to integrate these equations, certain assumptions are made regarding the variation

of the wind-on angleφu in the construction of the package. It is assumed thatφu has the form
shown schematically in Figure 4a. As the unwind point moves away from the guide eye during
the time interval 0≤ t ≤ t1, φu, is a positive constant, while as the unwind point moves back
towards the guide eye during the time intervalt1 ≤ t ≤ 0, φu is a negative constant. At the
front and back edges of the package,φu makes a rapid change in sign as the windings reverse
direction. The simultaneous variation in the balloon length over the course of one cycle of
motion of the unwind point is shown schematically in Figure 4b. Note that it is experimentally
observed [8] thatt1 ≤ 0/2.

At the end of an unwind cycle, the position vectorRu(t) in the rotating frame and the
yarn lengthsu(t) have returned to their starting values. Thus, these two quantities satisfy the
periodicity conditions

Ru(t + 0) = Ru(t), and su(t + 0) = su(t). (4.2)
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Figure 4. Schematic figures showing the variation inφu, (a), andsu, (b), during one complete unwind cycle
0≤ t ≤ 0.

The component Equations (4.1) are integrated subject to the conditions

zu(0) = zu(0) = h, zu(t1) = H + h, and θu(0) = θu(0) = 0

to obtain

θu(t)− θu(0) = −t + [su(t)− su(0)+ Vt] cosφu, 0≤ t ≤ 0 (4.3)

and

zu(t)− h =
{ [su(t)− su(0)+ Vt] sin|φu|, 0≤ t ≤ t1,
−[su(t)− su(0)+ V(t − 0)] sin|φu|, t1 ≤ t ≤ 0

(4.4)

where, as indicated in Figure 1, the front of the package coincides withzu = h and the package
height isH. The evaluation of Equation (4.3) att = 0 and Equation (4.4) att = t1 leads to
the three relations

1

V
= cosφu, su(t1)− su(0) = V

(
0

2
− t1

)
, and

2H

V0
= sinφu. (4.5)

4.2. THE SLOW TIMESCALE

When the magnitude of the wind-on angle|φu| is small (i.e.|φu| ≤ 15◦), 0 � ω−1
0 and the

concept of a slow timescale for the motion of the unwind point becomes meaningful. Thus,
the unwind angleφu is rescaled asφu = σ8u, whereγ is a small parameter and8u is anO(1)
quantity. This leads to the introduction of the ‘slow’ timescale variable

τ = σt.

The typical order of magnitude ofσ is O(10−1) [3]. This is somewhat larger than the
parameterε ∼ O(√10−3) which enters into the boundary layer expansion, so that the spatial
scale of the boundary layer is always small regardless of the position of the unwind point
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during its periodic motion. Thus, the boundary-layer and outer solutions at any instant are
reasonably approximated by the leading terms in the expansions developed in the previous
section. From now on only theO(1) equations from the boundary-layer and outer solutions
given above will be used,and the subscript zero on the variables in those equations will now
be dropped.

The equations that determine the outer solution are now rewritten in terms of the slow time
τ. Explicit dependence on the fast timescalet is suppressed since the objective is to simulate
the unwinding by a sequence of quasi-stationary balloon shapes. Equation (3.7) now becomes

σ2∂
2R
∂τ2
− 2σV

∂R′

∂τ
+ V2R′′ + 2k ×

(
σ
∂R
∂τ
− VR′

)
+ k × (k × R) = (TR′)′ + F,

(4.6)

whereF is given by the dimensionless form of Equation (2.5) betweenO and L, and by
Equation (2.6) betweenL andU. This equation must be solved subject to the inextensibility
conditionR′ ·R′ = 1 and the boundary conditions:R(0, τ) = 0 atO; continuity ofR′, R, and
T atL wheres = s`; and the location of the unwind pointU, the motion of which is governed
by Equations (4.3) and (4.4). The rescaled critical shear force condition Equation (3.24) at the
unwind point is

Vc =
∣∣[T (su, τ)− (σṡu + V)2

]
sinψ

∣∣ , (4.7)

where the ˙( ) now means differentiation with respect toτ.
All unknown variables(R, T ,Ru, su, σ0, σt1,V,ψ) are now expanded as perturbation

series inσ with the forms

R(s, τ) = R0(s)+ σR1(s, τ)+ σ2R2(s, τ)+ · · · ,
σ0 = 00 + σ01+ σ202+ · · ·

σt1 = τ1 = τ̃0+ στ̃1+ σ2τ̃2+ · · ·

 (4.8)

and so on. On the slow timescale the periodσ0 and the half periodτ1 = σt1 areO(1)
quantities. When these expansions are substituted into the rescaled forms of Equations (4.5),
the following results are obtained:

V = 1+ σ21

2
82
u + · · · ,

σ0 = 2H

|8u| − σ2 4H |8u|
3
+ · · · ,

τ1 = H

|8u| − σ[su0(τ̃0)− su0(0)] + · · · .


(4.9)

These equations and the rescaled slow timeτ = σt are now used in Equation (4.3) and
(4.4) to obtain the position of the unwind point as a function ofτ:

θu0(τ)+ σθu1(τ)+ · · · = su0(τ)− su0(0)+ σ [su1(τ)− su1(0)] + · · · (4.10)

and

zu0(τ)− h+ σzu1(τ)+ · · ·
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Figure 5. Variation of: (a) tension at distinguished points along the yarn, (b) angle the yarn tangent rotates through
in the boundary layer. The parameter values areVc = 1, µ = 0·1, p0 = 3·0, h = 6, H = 3, |φu| = 10◦ and
τ1 = 2·397 (dotted line).

=
{

τ|8u| + σ|8u| [su0(τ)− su0(0)] + · · · , 0≤ τ ≤ τ1

2H − τ|8u| − σ|8u| [su0(τ)− su0(0)] + · · · . τ1 ≤ τ ≤ σ0
(4.11)

Note that the componentzu(τ) of Ru(τ) and all of the quantities in Equation (4.9) are deter-
mined toO(σ) solely by theO(1) solution.

The leading order problem has now been reduced to solving a sequence ofO(1) equations:
R′0 · R′0 = 1 and

R′′0 − 2k × R′0+ k × (k × R0) = (T0R′0)
′ + F0, (4.12)

subject to the boundary conditionsR0(0) = 0, continuity of R0, R′0 andT0 at s`0, and the
critical shear force condition

Vc = |[T0(su0)− 1] sinψ0| . (4.13)

The slow time variableτ is now incremented and Equation (4.11) is used to obtain the
corresponding value ofzu0(τ), which is used as a final boundary condition in the solution of
theO(1) equations as discussed in [3]. It should be noted that throughout the simulation, the
concept of a ‘virtual’ package is assumed, where the lift-off pointL never falls off the edge
of the package. While this is an unrealistic physical assumption when the unwind point is
moving near the front edge, it is adequate over most of the unwind cycle.

5. Numerical simulation

Figures 5 and 6 show results for the simulated unwinding of a package over a single unwind
cycle with the guide-eye distanceh = 6, package heightH = 3, air drag coefficientp0 = 3
and package surface frictionµ = 0·1, for two values of critical shear forceVc = 1 andVc = 5.
The package wind-on angle is taken asφu = ±10◦ so thatσ = 0·1745 and|8u| = 1. The
asymmetry in the unwinding cycle is clearly visible with the period0 ∼ 6, whereτ1 ∼ 2·397
for Vc = 1, andτ1 ∼ 2·358 forVc = 5, as calculated from Equation (4.9). The values ofτ1

are marked in the figures by a vertical dotted line.
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Figure 6. Variation of: (a) tension at distinguished points along the yarn, (b) angle the yarn tangent rotates through
in the boundary layer. The parameter values areV c = 5, µ = 0·1, p0 = 3·0, h = 6,H = 3, |φu| = 10◦ and
τ1 = 2·358 (dotted line).

Figures 5a and 6a show yarn tensionT0 at three different locations: the guide eyeTg =
T0(0, τ) (dash-dot line); the asymptotic outer solutionTu = T0[su0(τ)] (solid line); and the
tension at the unwind pointTc = T̂0(0, τ) (dash line) which, by Equation (3.19), is

Tc = T̂0(0, τ) = [T0[su0(τ)] − 1] cosψ0+ 1.

The tension values at the guide eyeTg and the asymptotic outer solution tensionTu at the
unwind point are much more sensitive to the value ofVc than is the tension in the boundary
layerTc at the unwind point. Over the unwinding of a package heightH = 3, the tension at
any of the three locations varies by about 10%.

Figures 5b and 6b show the variation of the angleψ0 through which the yarn tangent rotates
in the bending boundary layer.ψ0 is particularly sensitive to the value ofVc. In accordance
with Equation (4.13),ψ0 drops slightly as the unwind point approaches the far end of the
package to compensate for the increased tension.

6. Concluding remarks

In this paper, a model of high speed package unwinding has been developed using the large
deflection theory of elastic rods as applied to ring-spinning balloon dynamics in [10]. A sin-
gular perturbation analysis has been used to show that, over most of the yarn path between the
guide eye and unwind point, the yarn behaves like a flexible string. Analysis of the boundary
layer in the neighbourhood of the unwind point provides a model for the cohesive forces that
hold the yarn winding in the package.

It has also been shown that the integration of the equation of motion for the unwind point
is asymmetric in time, as observed experimentally, and that for small wind-on angle, the
unwinding of a package can be simulated as a series of quasi-stationary unwinding balloons.
This has extended the model developed in [3].
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